Chen Yang
Dr.-Ing. habil. Jigou Liu

Bipolar Lathing Hall Effect Switch CYD505

Applications

- Brushless DC motors
- Speed measurement
- Counting
- Angle position detection
- Proximity detection
- Home applications
- Home safety etc.

Features

- 2.7 V to 30 V operation voltage
- Overvoltage protection capability up to 40 V
- High accuracy bipolar switch
- Built-in dynamic offset cancellation
- Open drain output
- Low thermal drift of magnetic sensing
- Qualified according to AEC-Q100 test standard

Order Information

- CYD505-PA

Package (PA): UA, LH

Specifications

Absolute Maximum Ratings ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Parameter	Symbol	Conditions	Rating	Unit
Maximum supply voltage	$\mathrm{V}_{\text {DDMAX }}$		30	V
Operating temperature	T_{A}		$-40 \sim+150$	${ }^{\circ} \mathrm{C}$
Storage temperature	T_{S}		$-40 \sim+165$	${ }^{\circ} \mathrm{C}$
Maximum output current	$\mathrm{I}_{\text {OMAX }}$		25	mA

Electrical Characteristics ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=12 \mathrm{VDC}$)

Characteristic	Symbol	Test Condition	Min.	Typ.	Max.	Unit
Supply voltage	V_{DD}		2.7		30	V
Supply current	I_{DD}	Output open		2.5	3.2	mA
Low output voltage	$\mathrm{V}_{\mathrm{OL}(\mathrm{ON})}$	@l $\mathrm{l}_{\mathrm{OUT}}=20 \mathrm{~mA}$		130	400	mV
Output leakage current	I_{OH}	Output switch off			0.1	$\mu \mathrm{~A}$
Output voltage	$\mathrm{V}_{\mathrm{OUT}}$				30	V
Output voltage fall time	t_{f}	$\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=820 \Omega ;$			1	$\mu \mathrm{~s}$
Output voltage rise time	t_{r}	$\mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}$			1	$\mu \mathrm{~s}$
Delay time	t_{d}			18		$\mu \mathrm{~s}$

Magnetic Characteristics ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=12 \mathrm{VDC}$)

Characteristic	Symbol	Test Condition	Min.	Typ.	Max.	Unit
Operating point (On point)	$\mathrm{B}_{\text {OP }}$	Pullup resistor $R_{L}=1 \mathrm{k} \Omega$, Load capacitor $\mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}$		13.5		mT
Release point (Off point)	$\mathrm{B}_{\text {RP }}$			-13.5		mT
Hysteresis	$\mathrm{B}_{\text {HYS }}$			27		mT
Temperature coefficient	Tc			-1000		ppm $/{ }^{\circ} \mathrm{C}$

Markt Schwabener Str. 8
85464 Finsing
Germany

Tel.: +49 (0)8121-2574100
Fax: +49 (0)8121-2574101
Email: info@chenyang-gmbh.com
http://www.chenyang-gmbh.com

General Specifications

CYD505 Hall Effect Switch is a monolithic integrated circuit which switches in response to magnetic field. If a magnetic field with flux lines perpendicular to the sensitive area is applied to the sensor, the biased Hall plate forces a Hall voltage proportional to this field. The Hall voltage is compared with the actual threshold level in the comparator. If the magnetic field exceeds the threshold levels, the output stage is switched to the appropriate state. The built-in hysteresis eliminates oscillation and provides switching behavior of output without bouncing.

Magnetic offset caused by mechanical stress is compensated by using the chopping offset compensation technique. A serial resistor or diode on the supply line is not required thanks to the built-in reverse voltage protection.

The open drain output is forced to a safe, high-impedance state (tri-state), in any of the following fault conditions: overtemperature, and undervoltage. In addition, the output current is limited (short-circuit protection).
The device is able to withstand a maximum supply voltage of 28 V for unlimited time and features overvoltage capability (40 V load dump). The architecture block diagram is shown in the following Fig.

Application Circuits

Circuit 1

Circuit 2

For applications with disturbances on the supply line or radiated disturbances, a series resistor R_{V} and two capacitors C_{P} and C_{L}, all placed close to the sensor, are recommended.

For example:
$R_{V}=100 \Omega$
$\mathrm{C}_{\mathrm{P}}=4.7 \mathrm{nF}$
$\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}$. $\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \sim 10 \mathrm{k} \Omega$

Markt Schwabener Str. 8
85464 Finsing
Germany

Tel.: +49 (0)8121-2574100
Fax: +49 (0)8121-2574101
Email: info@chenyang-gmbh.com
http://www.chenyang-gmbh.com

Version 1
Released in November 2020
Dr.-Ing. habil. Jigou Liu

Chen 2 ang
Technologies GmbH \& Co. KG

Magnetic conversion instructions

Applying a South Pole magnetic field greater than Bop (Antarctic proximity) to the seal side of the TO92S package, the output becomes low; while a North Pole field near to the seal side the output becomes high. The output does not change if the magnetic field is removed. For changing the output state, the opposite magnetic field polarity must be applied. When the IC is first powered on, if the magnetic field is between Bop and Brp, the output state will be in an undefined state (high or low).

The magnetic field polarity of the SOT23-3L package is the opposite of that of the TO92S. See figure below.

Output of TO92S package

Output of SOT23-3L package

Note:

Hall switch IC is a sensitive device and should be used and stored with care for electrostatic protection. The mechanical stress applied to the device housing and leads should be minimized during installation and use. It is recommended that the welding temperature should not exceed $350^{\circ} \mathrm{C}$ and the duration should not exceed 5 seconds. In order to ensure the safety and stability of Hall IC, it is not recommended to use out of parameter range for a long time.

ESD Test

The output pin has to be in tri-state (high impedance) for ESD measurements

Symbol	Parameter	Min	Max	Unit
$\mathrm{V}_{\text {HBM }}$	Human body model (according to AEC Q100-002)	-12	12	kV

Markt Schwabener Str. 8
85464 Finsing
Germany

Tel.: +49 (0)8121-2574100
Fax: +49 (0)8121-2574101
Email: info@chenyang-gmbh.com
http://www.chenyang-gmbh.com

Version 1
Released in November 2020
Dr.-Ing. habil. Jigou Liu
$\rightarrow \sqrt{n}$
Chen Yang
Technologies GmbH \& Co. KG

Package Outline

TO92S (UA)

(Packing: bulk, 1000pcs/bag)

Sensitive Area

$\frac{x X x X}{}$ Product ID
DateCode: Y ZZ
year week
(0~9) (01~52)

Symbol	Size (mm)		Size (in inches)	
	Min.	Max.	Min.	Max.
A	1.42	1.67	0.056	0.066
A1	0.66	0.86	0.026	0.034
b	0.35	0.56	0.014	0.022
b1	0.40	0.55	0.016	0.022
C	0.36	0.51	0.014	0.020
D	3.90	4.20	0.154	0.165
D1	2.97	3.27	0.117	0.129
E	2.90	3.28	0.114	0.129
e	1.27 typ.		0.050 typ.	
e1	2.44	2.64	0.096	0.104
L	13.5	15.5	0.531	0.610
x	2.03 typ.		0.080 typ.	
y	1.55 typ.		0.061 typ.	
z	0.50 typ.		0.020 typ.	
θ	45° typ.		45° typ.	

Markt Schwabener Str. 8
Tel.: +49 (0)8121-2574100
85464 Finsing
Germany

Fax: +49 (0)8121-2574101
Email: info@chenyang-gmbh.com http://www.chenyang-gmbh.com

Version 1
Released in November 2020
Dr.-Ing. habil. Jigou Liu

SOT23-3L(LH)

(Packing: Tape\&Reel, 3000pcs/reel)

Pin Assignment

Pin No.	Name	Function
1	Vcc	Power supply
2	GND	Ground
3	Vout	Output

Symbol	Size (mm)		Size (in inches)	
	Min.	Max.	Min.	Max.
A	1.05	1.25	0.041	0.049
A1	0	0.10	0	0.004
A2	1.05	1.15	0.041	0.045
b	0.30	0.50	0.012	0.020
c	0.10	0.20	0.004	0.008
D	2.82	3.02	0.111	0.119
E	1.50	1.70	0.059	0.067
E1	2.65	2.95	0.104	0.116
e	0.95 typ.		0.037 typ.	
e1	1.80	2.00	0.071	0.079
L	0.30	0.60	0.012	0.024
X	1.46 typ.		0.057 typ.	
y	0.80 typ.		0.032 typ.	
z	0.60 typ.		0.024 typ.	
θ	0°	8°	0°	8°

Markt Schwabener Str. 8
Tel.: +49 (0)8121-2574100
85464 Finsing
Germany

Fax: +49 (0)8121-2574101
Email: info@chenyang-gmbh.com http://www.chenyang-gmbh.com

