

High Sensitivity Differential Hall Gear Tooth sensor IC CYGTS9625

The differential Hall Effect Gear Tooth sensor CYGTS9625 provides a high sensitivity and a superior stability over temperature and symmetrical thresholds in order to achieve a stable duty cycle. CYGTS9625 is particularly suitable for rotational speed detection and timing applications of ferromagnetic toothed wheels such as anti-lock braking systems, transmissions, crankshafts, etc. The integrated circuit, which is based on Hall Effect principle, is response to changing differential magnetic fields created by ferrous targets when coupled with a magnet. It provides a digital signal output with frequency proportional to the rotational speed. The device is packaged in a 4-pin plastic SIP. It is lead (Pb) free, with 100% matte tin plated lead frame.

Features

- Integrated filter capacitor
- South and North pole pre-induction possible
- Large air gap
- 3.8V to 24V supply operating range
- Wide operating temperature range -40°C ~150°C
- Output compatible with both TTL and CMOS logic families
- Protection against over-voltage in all PIN
- Reverse-current protection in power supply V_{DD} PIN
- Output protection against electrical disturbances

Applications

Automotive and Heavy Duty Vehicles	Industrial Areas:
 Camshaft and crankshaft speed and position Transmission speed Tachometers Anti-skid/traction control 	 Sprocket speed Chain link conveyor speed/distance Stop motion detector High speed low cost proximity Tachometers, counters.

Device Information

Part number	Packing	Mounting	Temperature range	Marking
CYGTS9625VB	Bulk, 500pcs/bag	4-pin SIP	-40°C~150°C	9625

Operating Range

Parameter	Symbol	Test Conditions	Min	Тур	Max	Units
Back Bias Range	B _{Bias}	Operating	-500		500	mT
Differential Magnetic Field	ΔΒ	f=1kHz	-100		100	mT
Supply Voltage	V _{DD}	Operating	3.8	12	24	V
Operating Temperature	T _A		-40	~	150	°C
Storage Temperature	Ts		-65	~	175	С°

Electrical and Magnetic Specifications

Markt Schwabener Str. 8 D-85464 Finsing Germany

Tel.: +49 (0)8121 - 2574100 Fax: +49 (0)8121 - 2574101 Email: info@cy-sensors.com http://www.cy-sensors.com

Operating Parameters $T_A =$	-40°C to 150°C	$V_{PP} = 12V$ (unless	s otherwise specified)
operating rata notero r _A –		, v _{DD} – 12 v (unico,	

Parameter	Symbol	Test Conditions	Min	Тур.	Max	Unit
Supply Voltage	V _{DD}	Operating	3.8	12	24	V
Supply Current	I _{DD}	VDD=3.8 to 24 V	2.5	3.5	4.5	mA
Output Saturation Voltage	V _{sat}	I _{out} =20mA, T _A =25°C		150	400	mV
Output Leakage Current	I _{Leak}	V _{out} =24V			10	μA
Overvoltage protection at supply voltage	V _{SP}	I _{DD} = 10mA	30	35	40	V
Overvoltage protection at output terminal	V _{OP}	I _{out} =1mA, V _{out} =High	30	35	40	V
Over current protection	OCP ¹	T _A =25°C	40			mA
Power on time	t _{po} ²	V _{DD} >3.8V		3.8	9.0	ms
Settling time	t _{settle} ³	V _{DD} >3.8V, f=1kHz	0		50	ms
Response time	t _{response} 4	V _{DD} >3.8V, f=1kHz	3.8		59	ms
Output Rise Time	T _R ⁵	R1=1kΩ C=20pF			0.2	μs
Output Fall Time	T _F	R1=1kΩ C=20pF			0.2	μs
Upper corner frequency	fcu	-3dB, single pole	20			kHz
Lower corner frequency	fcl	-3dB, single pole			10	Hz
Back Bias Range	B _{Bias}	Operating	-500		500	mT
Differential Magnetic Field	ΔB^6	f=1kHz	-100		100	mT
Output on switch point	Вор	f=1kHz, ΔB=5mT			0	mT
Output off switch point	Boff	f=1kHz, ΔB=5mT	0			mT
Positive and negative hysteresis	B _{HYS}	f=1kHz, ΔB=5mT	0.4	1.2	2.0	mT

1 I_{OUT} does not change state when I_{OUT} =OCP.

2 Time required initializing device.

3 Time required for the output switch points to be within specification.

4 Equal to $t_{po} + t_{settle}$.

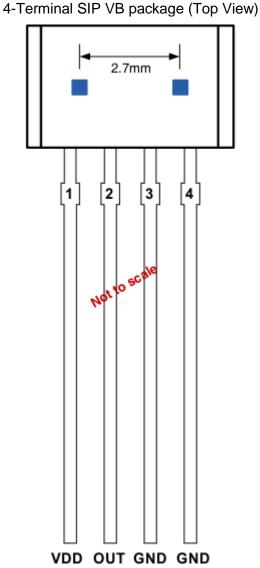
5 Output Rise Time will be dominated by the RC time constant.

6 Exceeding this limit might result in decreased duty cycle performance and the phase accuracy.

Absolute Maximum Ratings

Parameter	Symbol	Minimal value	Maximal value	Unit
Power supply voltage	V _{DD}	-30	30	V
Power output current	I _{DD}	-10	25	mA
Output terminal voltage	V _{OUT}	-0.5	30	V
Output terminal current sink	I _{SINK}	0	40	mA
Operating ambient temperature	T _A	-40	150	°C
Maximum junction temperature	TJ	-55	165	°C
Storage temperature	T _{STG}	-65	175	°C

Note: Stresses above those listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.



ESD (Emergency Shutdown System) Protection

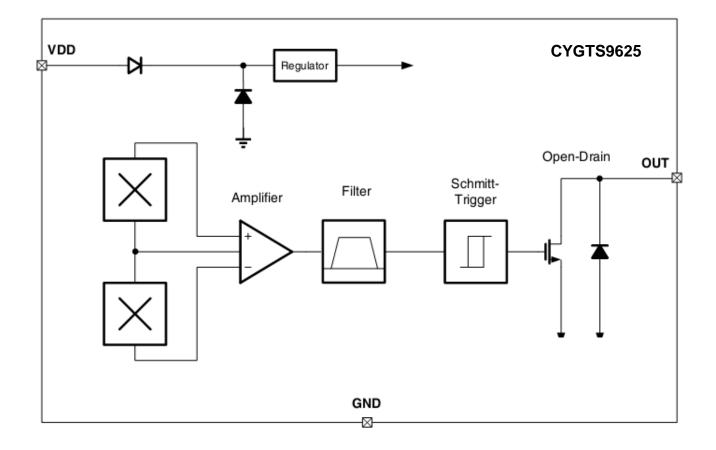
Human Body Model (HBM) Tests

Parameter	Symbol	Max.	Unit	Note
ESD	V_{ESD}	±4.0	kV	According to Standard EIA/JESD22-A114-B-HBM

Pin Configuration

	ļ				ı r		1
l	1]	[2		3	JL	4]
				10			
		Not	io ^{sci}				

Pin No. Symbol Description Type V_{DD} Supply voltage 3.8V to 24V power supply 1 2 OUT Output Open-drain output required a pull-up resistor 3 GND Ground Ground terminal 4 Ground terminal GND Ground


Markt Schwabener Str. 8 D-85464 Finsing Germany

Tel.: +49 (0)8121 - 2574100 Fax: +49 (0)8121-2574101 Email: info@cy-sensors.com http://www.cy-sensors.com

Version 1 Freigabe in September 2018 Dr.-Ing. habil. Jigou Liu

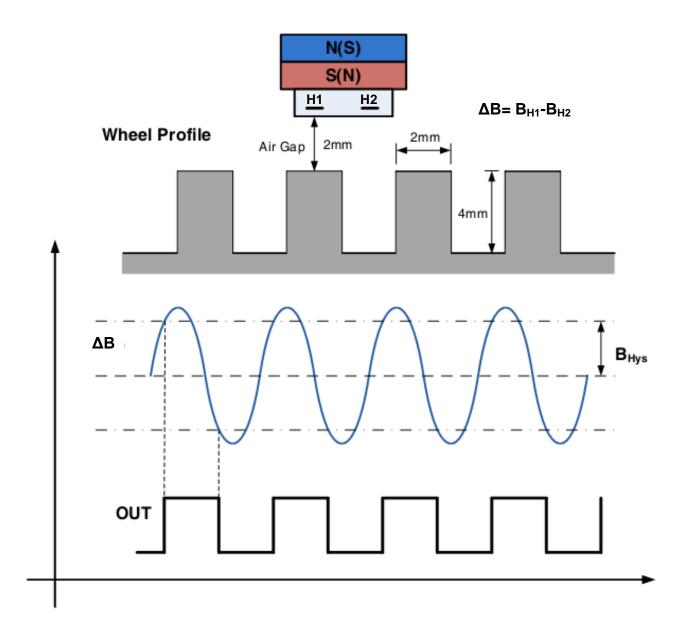
Functional Block Diagram

Functional Description

The Differential Hall Sensor IC detects the motion and position of ferromagnetic and permanent magnet structures by measuring the differential flux density of the magnetic field. Changes in field strength at the device face, which are induced by a moving target, are sensed by the two integrated Hall probes. The probes generate signals that are differentially amplified by on-chip electronics. This differential design provides immunity to radial vibration within the operating air gap range of the CYGTS9625, by rejection of the common mode signal. Steady-state magnet and system offsets are eliminated using an on-chip differential band-pass filter. This filter also provides relative immunity to interference from electromagnetic sources.

The device utilizes advanced temperature compensation for the band-pass filter, sensitivity, and Schmitt trigger switch-points to guarantee optimal operation over a wide range of air gaps and temperatures even at lower frequency.

The CYGTS9625 can be exploited to detect toothed wheel rotation in a rough environment. Jolts against the toothed wheel and ripple have no influence on the output signal. Furthermore, the device can be operated in a two-wire as well as in a three wire-configuration.

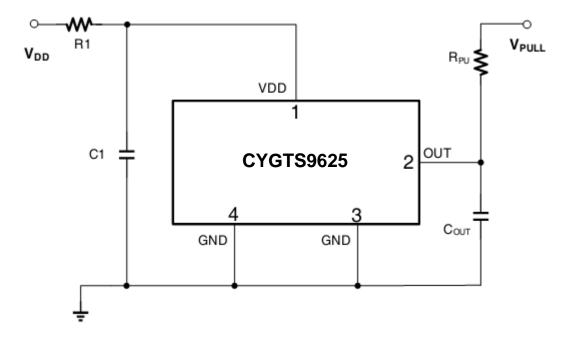


Gear Tooth Sensing

In the case of ferromagnetic toothed wheel application the IC has to be biased by the South or North Pole of a permanent magnet which should cover both Hall probes

The maximum air gap depends on

- the magnetic field strength (magnet used; pre-induction), and
- the toothed wheel that is used (dimensions, material, etc.)

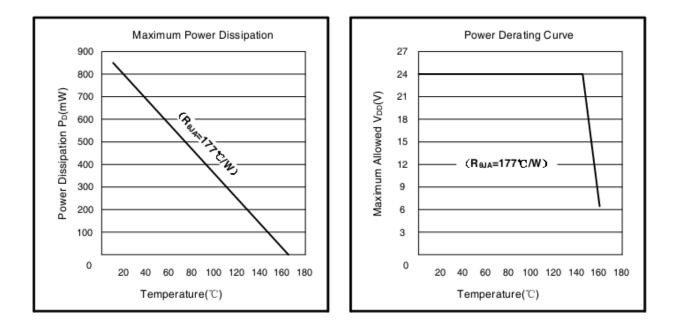


Recommended Application

The CYGTS9625 contains an on-chip voltage regulator and can operate over a wide supply voltage range. In applications that operate the device from an unregulated power supply, transient protection must be added externally. For applications using a regulated line, EMI/RFI protection may still be required.

Three-Wire Connection

Component	Value	Units
R _{PU}	1.2	kΩ
R1	200	Ω
C1	0.1	μF
C _{OUT}	1.0	μF


1. Pull-up resistor not required for protection but for normal operation

- 2. R1 is for improved CI performance
- 3. C_{OUT} is for improved BCI performance

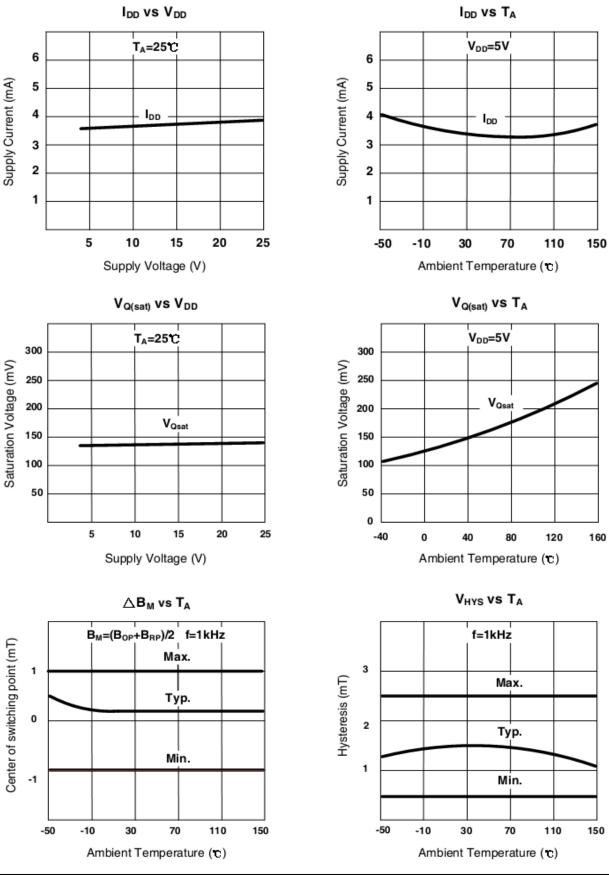
Thermal Characteristics

Symbol	Parameter	Test Conditions	Rating	Units
R _{QJA}	VB Package thermal resistance	Single-layer PCB, with copper limited to solder pads	177	°C/W

Power Derating Description

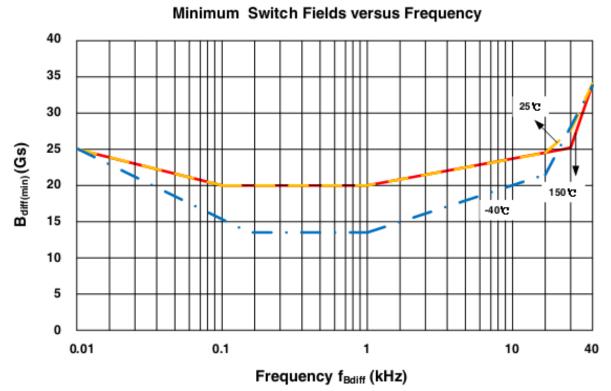
The device must be operated below the maximum junction temperature of the device, *T_J(max.)*. Under certain combinations of peak condition, reliable operation may require derating supplied power or improving the heat dissipation properties of the application. The package Thermal Resistance, *R*_{*θJA*}, is figure of merit summarizing the ability of the application and device to dissipate heat from the junction, through all paths to the ambient air. Its primary component is an Effective Thermal Conductivity, K, of the printed circuit board, including adjacent devices and traces. Radiation from the die through the device case, *R*_{*θJC*}, is relatively small component of *R*_{*θJA*}. Ambient air temperature, *T*_{*A*}, and air motion are significant external factors, damped by over molding.

The effect of varying power levels (Power Dissipation, P_D), can be estimated. The following formulas represent the fundamental relationships used to estimate T_J , at P_D .

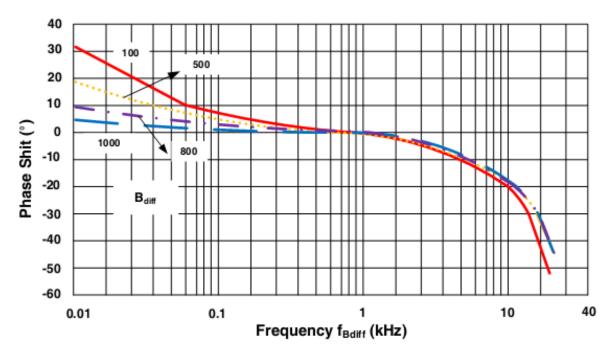

PD=VDD x IDD	(1)
riangle T=Pd x R $ heta$ JA	(2)
$T_J=T_A+\bigtriangleup T$	(3)
For example TA=25°C, VDD=12V,I DD=3	<i>3.5mA, R</i> ө <i>J</i> A =177 °C/W, we get
$P_D = V_{DD} \times I_{DD} = 12$	V x 3.5mA=42mW
riangle T=Pd x Reja=42	2 <i>mW x 177</i> °C/ <i>W</i> =7.5°C
<i>TJ=TA</i> +∆ <i>T=</i> 25°C-	+7.5°C=32.5°C

Version 1 Freigabe in September 2018 Dr.-Ing. habil. Jigou Liu

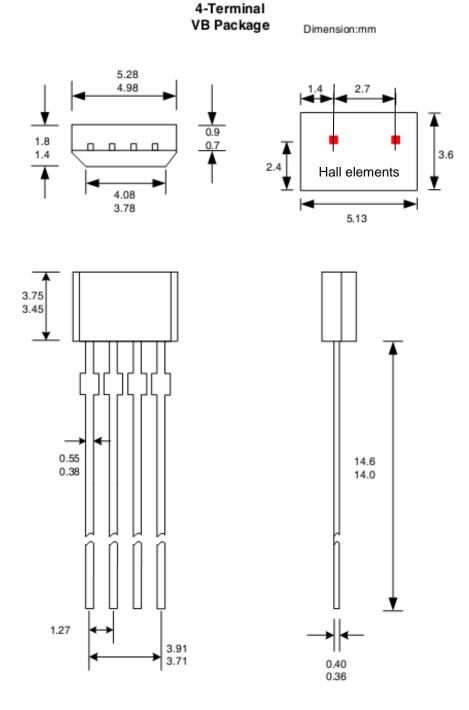
Chen Y ang Technologies GmbH & Co. KG



Markt Schwabener Str. 8 D-85464 Finsing Germany


Tel.: +49 (0)8121 – 2574100 Fax: +49 (0)8121 – 2574101 Email: info@cy-sensors.com http://www.cy-sensors.com

Simulation Result



Sensor Package

Notes:

- 1. Exact body and lead configuration at vendor's option within limits shown.
- 2. Height does not include mold gate flash.
- 3. Where no tolerance is specified, dimension is nominal.