

Two-Wire High Accuracy Differential Speed Sensor IC CYGTS9641 with Continuous Calibration

The differential Hall Effect sensor CYGTS9641 is designed to provide information about rotational speed to modern vehicle dynamics control systems and ABS. The output has been designed as a two wire current interface. Excellent accuracy and sensitivity are specified for harsh automotive requirements with a wide temperature range, high ESD and EMC robustness.

The regulated current output is configured for two-wire applications and the 2.0mm spacing between the dual Hall elements is optimized for fine pitch target wheel configurations. The device is packaged in a 2-pin plastic SIP. It is lead (Pb) free, with 100% matter tin plated lead frame.

Features

- Two-wire current interface
- High sensitivity
- South and North pole pre-induction possible
- Large air gap
- 4.5V to 24V supply operating range
- Wide operating temperature range -40°C ~150°C

Applications

Automotive and Heavy Duty Vehicles	Industrial Areas:
 Camshaft and crankshaft speed and position Transmission speed Tachometers Anti-skid/traction control 	 Sprocket speed Chain link conveyor speed/distance Stop motion detector High speed low cost proximity Tachometers, counters.

Device Information

Part number	Packing	Mounting	Temperature range	Marking
CYGTS9641TS	Bulk, 500pcs/bag	2-pin SIP	-40°C~150°C	9641

Operating Range

Parameter	Symbol	Test Conditions	Min	Тур	Max	Units
Back Bias Range	B _{Bias}	Operating	-500		500	mT
Supply Voltage	V _{DD}	Operating	4.5	12	24	V
Operating Temperature	T _A		-40	1	150	°C
Storage Temperature	Ts		-65	~	175	°C

Electrical and Magnetic Specifications

Operating Parameters $T_A = -40^{\circ}$ C to 150°C, $V_{DD} = 5$ V (unless otherwise specified)

Parameter	Symbol	Test Conditions	Min	Тур.	Max	Unit
Operating Supply Voltage	V _{DD}	Operating	4.5	12	24	V
Operating Supply Current	I _{DD(Low)}	V _{DD} =4.5V to 24 V	5.9	7.0	8.4	mA
Operating Supply Current	I _{DD(High)}	V _{DD} =4.5V to 24 V	12.0	14.0	16.0	mA
Supply current ratio	R _{CUR}	I _{DD(High)} / I _{DD(Low)}	1.8	2	2.4	
Power on time	t _{po} ¹	V _{DD} >4.5V		3.8	9.0	ms
Settling time	t _{settle} ²	V _{DD} >4.5V, f=1kHz	0		50	ms
Response time	t _{response} ³	V _{DD} >4.5V, f=1kHz	3.8		59	ms
Output Rise Time	T _R ⁵	R1=1kΩ C=20pF		0.4	1.0	μs
Output Fall Time	T _F	R1=1kΩ C=20pF		0.35	1.0	μs
Upper corner frequency	fcu	-3dB, single pole	15			kHz
Lower corner frequency	fcl	-3dB, single pole			5	Hz
Back Bias Range	B _{Bias}	Operating	-500		500	mT
Operating point	ΔB_{OP1}	f=1kHz, B _{diff} =5mT			0	mT
Release point	ΔB_{RP1}	f=1kHz, B _{diff} =5mT	0			mT
Hysteresis	B _{HYS1}	f=1kHz, ΔB=5mT	0.7	1.3	2.8	mT
Center of switching points	ΔB_{M1}	$(B_{OP} + B_{RP})/2$	-2.0	0	2.0	mT

1 Time required initializing device.

2 Time required for the output switch points to be within specification.

3 Equal to $t_{po} + t_{settle}$.

Absolute Maximum Ratings

Parameter	Symbol	Minimal value	Maximal value	Unit
Power supply voltage	V _{DD}	-0.5	30	V
Operating ambient temperature	T _A	-40	150	°C
Maximum junction temperature	TJ	-55	165	°C
Storage temperature	T _{STG}	-65	175	°C

Note: Stresses above those listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD (Emergency Shutdown System) Protection

Human Body Model (HBM) Tests

Parameter	Symbol	Max.	Unit	Note
ESD	V_{ESD}	±8.0	kV	According to Standard AEC-Q100-002

Pin Configuration

2-Terminal SIP TS package (Top View)

VDD GND

Pin No.	Symbol	Туре	Description
1	V_{DD}	Supply voltage	3.8V to 24V power supply
2	GND	Ground	Ground terminal

Functional Block Diagram

Functional Description

The CYGTS9641 is an optimized Hall Effect sensing integrated circuit that provides a user-friendly solution for ferromagnetic target wheel sensing in two-wire applications. This small package can be easily assembled used in conjunction with a wide variety of target shapes and sizes.

The integrated circuit incorporates a dual-element Hall Effect sensor and signal processing that switches to differential magnetic signals created by a ferromagnetic target wheel. The circuitry contains a sophisticated digital circuit to reduce system offsets and to calibrate the gain for air-gap-independent switch points.

The regulated current output is configured for two-wire applications and the sensor is ideally suited for obtaining speed and duty cycle information in ABS (antilock braking systems). The 2.0 mm spacing between the dual Hall elements is optimized for fine pitch target wheels. The package is lead (Pb) free, with 100% matte tin lead frame plating.

Gear Tooth Sensing

In the case of ferromagnetic toothed wheel application the IC has to be biased by the South or North Pole of a permanent magnet which should cover both Hall probes

The maximum air gap depends on

- the magnetic field strength (magnet used; pre-induction), and
- the toothed wheel that is used (dimensions, material, etc.)

Recommended Application

The CYGTS9641 contains an on-chip voltage regulator and can operate over a wide supply voltage range.

Two-Wire Connection

Package Designator

Notes:

- 1. Exact body and lead configuration at vendor's option within limits shown.
- 2. Height does not include mold gate flash.
 - Where no tolerance is specified, dimension is nominal.

Markt Schwabener Str. 8 D-85464 Finsing Germany

Tel.: +49 (0)8121 - 2574100 Fax: +49 (0)8121 - 2574101 Email: info@cy-sensors.com http://www.cy-sensors.com