Self-Adjusting Hall Effect Gear Tooth Sensor IC CYGTS9802 with Complementary Output

The CYGTS9802 is a sophisticated IC featuring an on-chip 12-bit A/D Converter and logic that acts as a digital sample and hold circuit. A separate 6-bit D/A converter provides a fixed hysteresis. The sensor does not have a chopper delay. It uses a single Hall plate which is immune to rotary alignment problems. The bias magnet can be from 1000GS to 4000Gs. As the signal is sampled, the logic recognizes an increasing or decreasing flux density. The OUT will turn on (BOP) after the flux has reached its peak and decreased by an amount equal to the hysteresis. Similarly the OUT will turn off (BRP) after the flux has reached its minimum value and increased by an amount equal to the hysteresis. The complementary outputs (OUT and OUTB) are provided in this sensor. The OUTB will turn off after the flux has reached its peak and decreased by an amount equal to the hysteresis. Similarly the OUTB will turn on after the flux has reached its minimum value and increased by an amount equal to the hysteresis. Similarly the OUTB will turn off after the flux has reached its peak and decreased by an amount equal to the hysteresis. Similarly the OUTB will turn off after the flux has reached its peak and decreased by an amount equal to the hysteresis. Similarly the OUTB will turn on after the flux has reached its minimum value and increased by an amount equal to the hysteresis.

Features

- High sensitivity
- Complementary output signal
- True zero speed detection
- Short circuit protection
- Insensitive to orientation
- Wide voltage working range
- Self-adjusting magnetic range
- On-chip 12 bit A/D converter
- High speed operation
- No chopper delay applications
- RoHS compliant

Applications

Automotive and Heavy Duty Vehicles:

- Camshaft and crankshaft speed and position
- Transmission speed
- Tachometers
- Anti-skid/traction control

SIP-4

Industrial Areas:

- Sprocket speed
- Chain link conveyor speed/distance
- Stop motion detector
- High speed low cost proximity
- Tachometers, counters.

Magnetic Specifications

DC Operating Parameters $T_A = -40^{\circ}$ C to 150° C, $V_{DD} = 4.0$ V to 24V (unless otherwise specified)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Units
Back Bias Range	BBIAS	Operating	-30		4000	Gs
Linear Region		Vpd = 12V	500		5000	Gs
Hysteresis	Bhys		10		80	Gs

10Gs=1mT

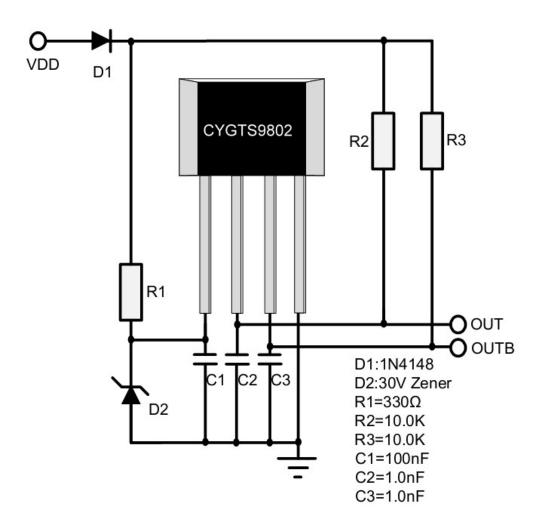
Tel.: +49 (0)8121 – 2574100 Fax: +49 (0)8121 – 2574101 Email: info@cy-sensors.com http://www.cy-sensors.com

Electrical Specifications

DC Operating Parameters $T_A = -40^{\circ}$ C to 150°C, $V_{DD} = 4.0$ V to 24V (unless otherwise specified)

Parameter	Symbol	mbol Test Conditions		Тур	Max	Unit
Supply Voltage	VDD	VDD Operating		12	24	V
Supply Current	loo	Vpd = 12V	1.5	3.0	4.5	mA
Power-Up State	POS(OUT)	Mar Maria	Н	Н	н	
	POS(OUTB)	VDD > VDD(min)	L	L	L	
Supply Current	loo	V _{DD} = 4.0V to 30V	1.0		6.0	mA
Leakage Current	ILEAK	Vout = 4.0V to 30V			10	uA
Output Current	Іоит	Operating			25	mA
Output Saturation Voltage	VSAT	VDD = 12V, IOUT = 25 mA			600	mV
Output Current Limit	Limit	Vpp = 12V	50	100	150	mA
Output Short Circuit Shutdown	TFAULT	Fault	10		20	uS
Clock Frequency	Fdk	Operating	400	500	600	KHz
Output Diag Time	Tr	VDD=12V, R1 = 1.0K,			400	nS
Output Rise Time		Cload=10pF				
Output Fall Time	Tr	VDD=12V R1 = 1.0K,			400	nS
		Cload=10pF				
Bandwidth	BW	Operating			15	KHz
Thermal Resistance	RTH	Operating			200	'C/Watt

Absolute Maximum Ratings

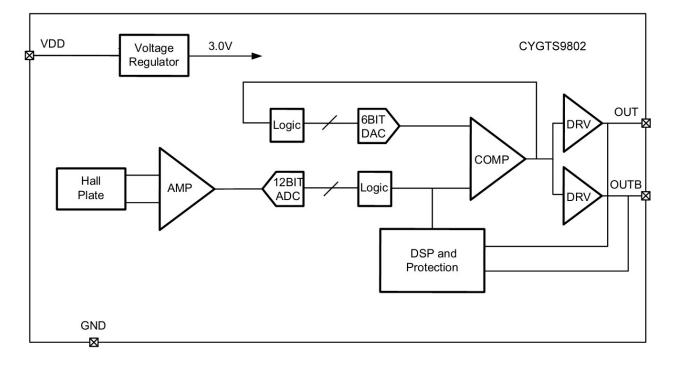

Parameter	Limit Values		
	Min.	Max.	
Supply Voltage (Operating), VDD	-0.3V	30V	
Output Voltage, Vo	-0.3V	30V	
Supply Current (Fault), IDD		50mA	
Output Current (Fault), lour		30mA	
Output Current (Fault), Itault		200mA	
Junction temperature, TJ (5000h)		150°C	
Junction temperature, TJ (2000h)		160°C	
Junction temperature, TJ (1000h)		170°C	
Junction temperature, TJ (100h)		180°C	
Operating Temperature Range, TA	- 40°C	150°C	
Storage Temperature Range, Ts	- 65°C	150°C	

ESD (Emergency Shutdown System) Protection

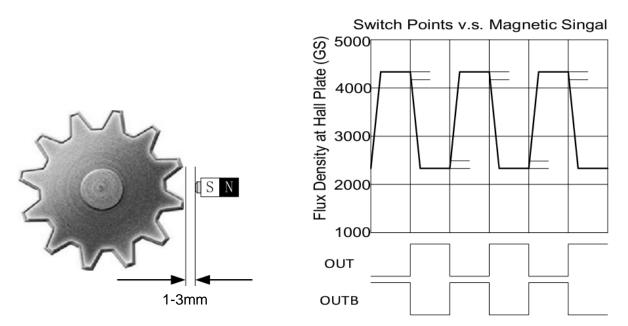
Human	Body	Model	(HBM)) tests
riuman	DOUY	would		10313

Parameter	Symbol	Max.	Unit	Note	
ESD	Vesd	8	kV	According to standard	
				EIA/JESD22-A114-B HBM	

Application Circuit and Pin Configuration



Number	Name	Function
1	VDD	Connects power supply to chip
2	OUT	Signal Output
3	OUTB	Complementary Signal Output
4	GND	Ground terminal


Version 2 Released in May 2016 Dr.-Ing. habil. Jigou Liu

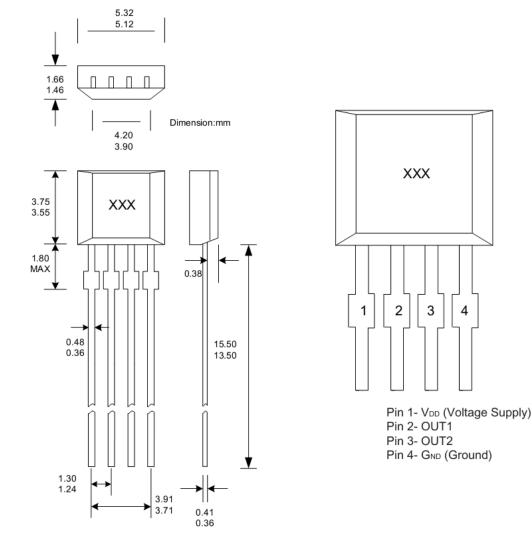
Block Diagram

Gear Tooth Sensing

In the case of Ferromagnetic toothed wheel application the IC has to be biased by the south pole of a permanent magnet (Maximum 4000Gs). When assembling the sensor system, suggest to choose a magnet as back bias flux from 1000Gs to 4000Gs. Normally the South pole of magnet faces the unbranded side of the IC. The magnet should be glued to the back surface (non branded side) of the IC using a adhesive or suitable epoxy. The sensor CYGTS9802 is "Self adjusting" over a wide range of back bias flux eliminating the need for any trimming in the application. At the chip

Markt Schwabener Str. 8 D-85464 Finsing Germany

Tel.: +49 (0)8121 – 2574100 Fax: +49 (0)8121 – 2574101 Email: info@cy-sensors.com http://www.cy-sensors.com Version 2 Released in May 2016 Dr.-Ing. habil. Jigou Liu



power on state, the output is reset to the high state whatever the field is. The output only changes after the first min is detected. The reset state holds no information about the field. If the supply of the chip is raised slowly, the reset state is not stable; the output maybe can't set to the high state. The maximum air gap depends on

- the magnetic field strength (magnet used; pre-induction) and
- the toothed wheel that is used (dimensions, material, etc.)

It is strongly recommended that an external ceramic bypass capacitor in the range 10nF to 1uF be connected between the supply and ground of the device to reduce external noise. The series resistor in combination with the bypass capacitor creates a filter for EMC pulse. The pull-up resistor should be chosen to limit the current through the output transistor; do not exceed the maximum continuous output current of the device.

Physical Characteristics

Notes:

- 1. Exact body and lead configuration at vendor's option within limits shown.
- 2. Where no tolerance is specified, dimension is nominal.

Markt Schwabener Str. 8 D-85464 Finsing Germany

Tel.: +49 (0)8121 - 2574100 Fax: +49 (0)8121 - 2574101 Email: info@cy-sensors.com http://www.cy-sensors.com