

AC/DC Hall Effect Voltage Sensor CYHVS800D

CYHVS800D is a Hall Effect Voltage sensor, which is based on Hall Effect closed loop and magnetic compensation principle. This sensor can be used for measuring AC and DC voltage with different wave forms. It has high electric isolation.

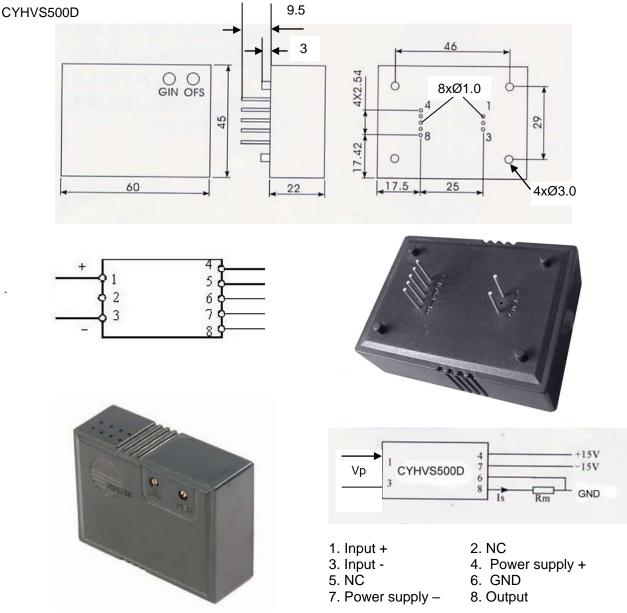
Features

• High electrical isolation

- High reliability
- Good overload capability
- Small sizes
- Insulated plastic case recognized according to UL94-V0

Applications

- Switched Mode Power Supplies
- Uninterruptible power supplies (UPS)
- Overvoltage protection
- Feedback of control systems
- Electric power network monitoring
- AC frequency conversion servo-motors
- Various power supplies


Part number	CYHVS50D	CYHVS200D	CYHVS400D	CYHVS500D	CYHVS800D
Rated input voltage (V_N)	±50V	±200V	±400V	±500V	±800V
Measuring voltage range(V _{in})	0~±100V	0~±400V	0~±800V	0~±800V	0~±800V
Rated output current (Is)	±20mA				
Turns ratio (N)	4000 : 1000				
Measuring Resistance (R _m)	$Vc = \pm 15VDC$, $54 \sim 360\Omega$				
Power supply (V _c)	±12V ~ ±15V DC				
Isolation voltage (Vd)	2.5kV/50Hz/1min				
Linearity (ϵ_L)	±0.2% FS				
Maximum measuring error (ϵ_M)	Ta=25°C, Vc=±15VDC ±0.8% FS				
Offset current (I _o)	Ta=25°C, ±0.2mA				
Thermal drift of offset current	Vp=0, Ta=-25°C ~ +85°C ±0.5mA				
Response time	100µs				
Frequency band width (f_b)	DC~ 5kHz (-3dB)				
Ambient Operating Temperature (T_A)	-25°C ~ +85°C				
Ambient Storage Temperature (T _s)	-40°C ~ +100°C				
Input resistance (R _i)	Ta=25°C, 400kΩ				
Secondary coil resistance (R _s)	Ta=25°C, 50Ω				

Electrical Parameters

Chen Yang Technologies GmbH & Co. KG

Case Style and Connection

Application Note

- 1) The sensor is connected according to the figure shown above. The output voltage can be detected at the output terminal when the measuring voltage is applied to the input terminal of the sensor. (Note: the sensor can be damaged by a incorrect connection)
- 2) Maximum measuring voltage range of this sensor is 1.5 times of the rated input voltage.
- OFS: adjustment of DC zero point;
 GIN: adjustment of the gain (amplitude of the output voltage)