

Linearer Hall-Effekt-Sensor CYSJ2A

Der CYSJ2A Hall-Effekt-Sensor zeichnet sich durch seine ultrahohe Empfindlichkeit und seine niedrigen Temperaturkoeffizienten aus. Dieser Sensor wird unter Verwendung der Technik der Molekularstrahlepitaxie (MBE) hergestellt, die eine ausgezeichnete Gleichmäßigkeit und Reproduzierbarkeit bietet.

Eigenschaften:

- Ultrahohe Empfindlichkeit (180 V/AT)
- Geringer Strombedarf
- Sehr geringer Stromverbrauch
- Erweiterter Betriebstemperaturbereich
- Kleiner Linearitätsfehler der Hallspannung
- Miniaturgehäuse aus Kunststoff SOT-143 für Aufputzmontage oder SIP (Through Slot)
- Großer Messbereich (0,1µT-3T)

Anwendungen:

- Magnetfeldmessung
- Niedertemperaturanwendungen
- Strom- und Leistungsmessung
- Steuerung von bürstenlosen Gleichstrommotoren
- Mikroschalter
- Positionssensoren
- Geschwindigkeits- und Drehzahlerkennung

1. Modell

Der CYSJ2A-Hall-Sensor wird aus einem AlGaAs/InGaAs/GaAs-2DEG (zweidimensionales Elektronengas) Heteroübergangshalbleiter hergestellt.

2. Grenzwerte

Parameter	Symbol	Wert	Einheit
Steuerspannung	V _c	6	V
Steuerstrom	Ic	9	mA
Energieverbrauch	P_D	54	mW
Betriebstemperatur	Top	-100 ~ +200	°C
Lagertemperatur	T _s	-100 ~ +200	°C
Löttemperatur#	T _{sol}	260	°C

Lötzeit: 10 Sekunden

3. Elektrische Eigenschaften

Parameter	Symbol	Testbedingung	MIN	TYP	MAX	Einheit
Ausgangshallspannung	V _H	Ic=1mA, B=100mT	13	16	19	mV
Restverhältnis *1	V _{HO} /V _H	Ic=1mA	-5	-	+5	%
Restverhältnis *1	V_{HO}/V_{H}	Ic=5mA	-7	-	+7	%
Eingangswiderstand	R _{IN}	Ic=1mA, B=0 mT	620	720	780	Ω
Ausgangswiderstand	R _{OUT}	Ic=1mA, B=0 mT	620	720	780	Ω
Temperaturkoeffizient der	α	Ic=1mA, B=100mT				
Hallspannung *2		$(T_1 = -100 ^{\circ}C, T_2 = 150 ^{\circ}C)$	-0.05	-0.06	-0.08	%/ °C
Temperaturkoeffizient des Eingangswiderstands *3	β	Ic=1mA, B=0 mT (T ₁ = -100 °C,T ₂ =150 °C)	-	0.3	0.4	%/ °C
Linearität der Hallspannung ** **	γ	Ic= 1mA, B ₁ =60mT,B ₂ =500mT	-	0.5	1.0	%

* 1 Restverhältnis =
$$\frac{V \text{Ho}(B=0 \text{mT})}{V H(B=100 \text{mT})}$$

* ²
$$\alpha = \frac{1}{VH(T1)} \times \frac{VH(T2)-VH(T1)}{T2-T1} \times 100$$

*
3
 $\beta = \frac{1}{RIN(T1)} \times \frac{RIN(T2) - RIN(T1)}{T2 - T1} \times 100$

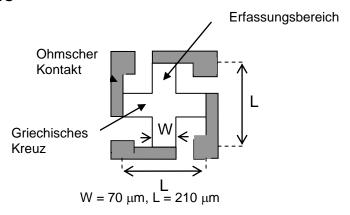
* 4
$$\gamma = \frac{K_H(B_2) - K_H(B_1)}{K_H(B_2) + K_H(B_1)} \times 200$$

$$K_H = \frac{V_H}{IB}$$

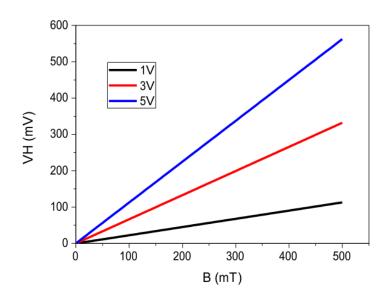
V_{Ho}: Offset-Spannung

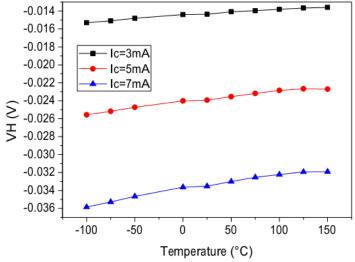
B: Magnetflussdichte

T₁, T₂: Umgebungstemperatur


K_H: Stromempfindlichkeit

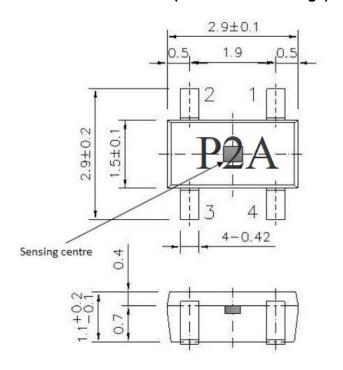
4. Teilenummern und Bestellinformationen

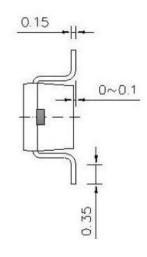

Gehäuse	Teilenummer	Mark	Verpackung	Temperaturbereich
SOT-143	CYSJ2A-S	P2A	3000 Stück/Rolle	-100°C ~ +200°C
SIP/2.8x3.1x0.90mm	CYSJ2A-T	P2A	500 Stück/Beutel	-100°C ~ +200°C


5. Form des Hallsensors

6. Typische Eigenschaften

Ausgangshallspannung in Abhängigkeit vom Magnetfeld bei einer Spannung von 1 V, 3 V und 5 V an den Eingängen des Hall-Sensors




Ausgangshallspannung in Abhängigkeit von der Temperatur bei Versorgungsströmen von 3mA, 5mA und 7mA an den Eingängen des Hallsensors und bei einem Magnetfeld von 30mT

7. Übersichtszeichnungen (Einheit: mm)

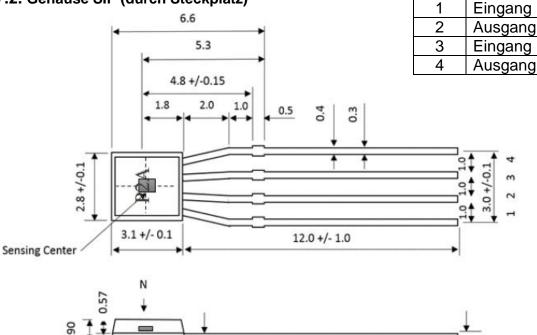
7.1. Gehäuse SOT 143 (Oberflächenmontage)

No.

Klemmenanschluss

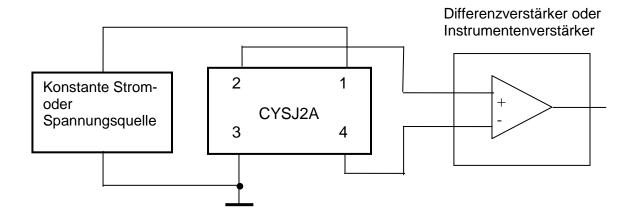
Terminal

Polarität


 (\pm)

±)

Ŧ)


Ŧ)

7.2. Gehäuse SIP (durch Steckplatz)

8. Verbidnung

9. Anwendungshinweise

Die Hallspannung VH kann positiv und negativ sein. Aber wenn man den Sensor wie folgt anschließt:

Schaltung 1

CYSJ2A

3

CYSJ2A

Pin 1: Positive Eingangsspannung V+, zum Beispiel +5VDC.

Pin 3: GND
Pin 2: AUSGANG
Pin 4: GND

kann nur die positive Spannung an Pin 2 gemessen werden. Dies bedeutet, dass die Ausgangsspannung bei Magnetfeld Null nicht null ist. Diese Spannung wird als Offsetspannung bezeichnet. Die Ausgangsspannung ist in diesem Fall nicht gleich der Hall-Spannung. Die Ausgangsspannung ist gleich der Summe aus Offsetspannung und Hallspannung.