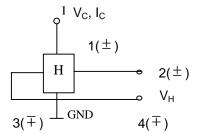


CYTHS124 GaAs Lineares Hall-Effekt Element

Die CYTHS124 Hall-Effekt Elementserie ist ein mit Ionen implantierter Magnetfeldsensor, der aus einem monokristallinen Gallium-Arsen (GaAs) Halbleitermaterial der Gruppe (III-V) hergestellt wird, die Ionen-implantierte Technologie wird angewandt. Er kann ein magnetisches Flussdichtensignal linear in ein Ausgangsspannungssignal umwandeln.


Eigenschaften

- hohe Linearität
- ausgezeichnete Temperaturstabilität
- Miniaturgehäuse
- weiter Messbereich 0-3T

Typische Anwendungen

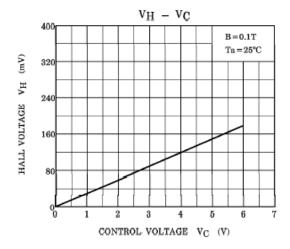
- Magnetfeldmessungen
- DC Bürstenlose Motoren
- Stromsensor
- Kontaktlose Schalter
- Positionkontrolle
- Drehzahlerkennung

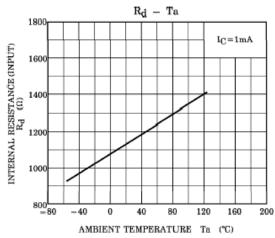
Blockdiagramm

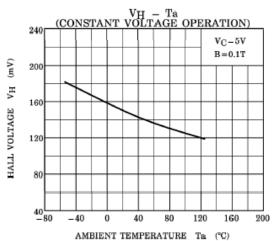
Absolute Grenzwerte

Parameter	Symbol	Wert	Einheit
Max. Versorgungspannung	V _C	12	V
Max. Versorgungsleistung	P _D	150	mW
Betriebstemperaturbereich	T _A	-55~125	°C
Lagerungstemperaturbereich	T _S	-55~150	°C

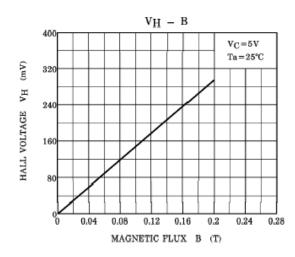
Elektrische Eigenschaften (T_A=25°C)

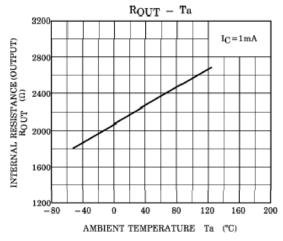

Parameter	Symbol	Testbedingungen	min	typ.	max	Einheit
Hallspannung am Ausgang	V _H	Vc=5V, B=0.1T	130	150	170	mV
Restspannung Verhältnis	V_{HO}/V_{H}	Vc=5V, B=0 /B=0.1T	-	•	±5	%
Eingangswiderstand	R _{in}	I _C =1mA	1000	1250	1500	Ω
Ausgangswiderstand	R _{out}	I _C =1mA	1800	2375	3000	Ω
Temperaturkoeffizient	Vнт	I _C =5mA , B=0,1T T1=25°C,T2=125°C	-	ı	0,06	%/°C
spezifische Empfindlichkeit	K*	Vc=5V, B=0,1T	-	30	-	x10-2/T
Linearität	ΔK _H	V _C =5V, B1=0,05T, B2=0,1T	-	-	2	%

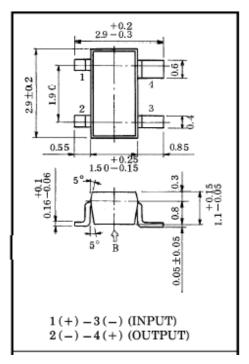

$$\begin{split} V_{HT} &= \frac{1}{V_{H \; (T1)}} \cdot \frac{V_{H \; (T2) \; - V_{H \; (T1)}}}{T2 - T1} \times 100 \; (\%/^{\circ}C) \qquad V_{HO} \; ; \text{Restspannung} \\ \Delta K_{H} &= \frac{K_{H \; (B2) \; - K_{H \; (B1)}}}{1/2 \{ K_{H \; (B1) \; + K_{H \; (B2)} \}} \times 100 \; (\%), \; K_{H} = \frac{V_{H}}{I_{C} \cdot B} \; K_{H} \; ; \text{Produkt-Empfindlichkeit} \\ K^{*} &= V_{H} / (R_{d} \times I_{C} \times B) = K_{H} / R_{d} \end{split}$$


http://www.cy-sensors.com

Charakteristische Kurve and Maße (in mm)

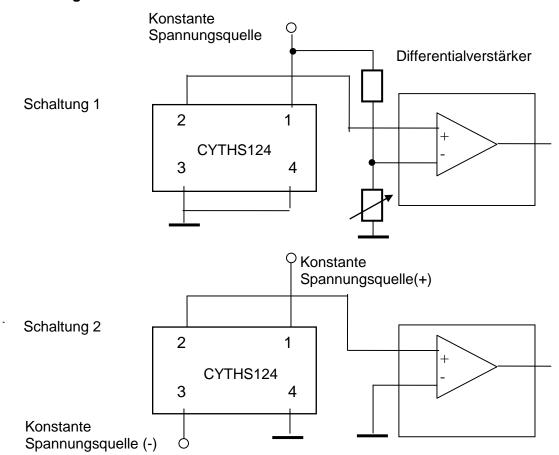






Maße (in mm)

Einheitsgewicht: 0.013g



Verbindung

. Anwendungshinweise

Die Hallspannung V_H kann positiv oder negativ sein, wenn der Sensor wie folgt verbunden wird (Schaltung 1):

Pin 1: positive Eingangsspannung V+, beispielsweise +5VDC.

Pin 3: GND
Pin 2: AUSGANG
Pin 4: GND

Es ist nur möglich die positive Spannung am Pin 2 zu messen. Das bedeutet, dass die Ausgangsspannung am Nullmagnetfeld null beträgt. Diese Spannung wird als Offset-Spannung bezeichnet.

Die Ausgangsspannung ist in diesem Fall nicht gleich der Hallspannung. Die Ausgangsspannung entspricht der Summe der Offset-Spannung und der Hallspannung.

Die Offset-Spannung wird null, wenn die doppelte Versorgungsspannung V+ und V- am Sensor anliegt (Schaltung 2):

Pin 1: positive Eingangsspannung V+, beispielsweise +5VDC. Pin 3: negative Eingangsspannung V-,beispielsweise -5VDC

Pin 2: AUSGANG Pin 4: GND

In diesem Fall entspricht die Ausgangspannung der Hallspannung.