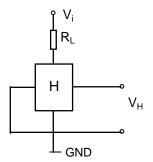


CYTY302B InSb Hall-Effekt Element


Das Hall-Effekt Element CYTY302B wird aus dem zusammengesetzten Halbleitermaterial Indium Stibnit (InSb) hergestellt, es arbeitet nach dem Hall-Effekt Prinzip. Es kann ein magnetisches Flussdichtensignal linear in ein Ausgangsspannungssignal umwandeln.

Eigenschaften

- hohe magnetische Empfindlichkeit
- niedrige Offset-Spannung
- Miniaturgehäuse

Typische Anwendungen

- Magnetfeldmessung
- Stromsensor
- Geschwindigkeitsmessung
- DC Bürstenloser Motor
- Positionkontrolle

1. Grenzwerte(Ta=25°C)

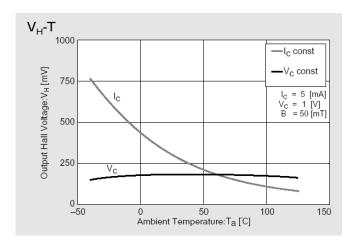
Parameter	Symbol	Werte	Einheit
Maximale Versorgungsstrom	Imax	20 (at 25°C)	mA
·Maximale Leistungsabgabe	Pmax	150 (at 25°C)	mW
Betriebstemperaturbereich	Тор	− 40 ~ + 110	°C
Lagerungstemperaturbereich	Tst	- 40 ~ + 125	°C

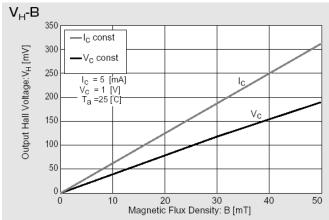
2. Elektrische Eigenschaften (gemessen bei 25°C)

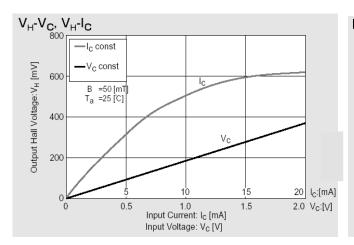
Parameter	Symbol	Messbedingungen	Min	Max	Einheit
Hallspannung am Ausgang	VH	Vin = 1V, B = 50mT	196	415	mV
Eingangswiderstand	Rin	I = 0.1mA	240	550	Ω
Ausgangswiderstand	Rout	I = 0.1mA	240	550	Ω
Offset-Spannung	VO	Vin = 1V, B = 0G	-7	+7	mV
Temp. Koeff. des VH	α	Ta = 0 ~ + 40°C AVG.	-	-1.8	% /°C
Temp. Koeff. des Rin, Rout	β	Ta = 0 ~ + 40°C AVG.	-	-1.8	% /°C
Dielektrische Stärke		100V DC	1.0		МΩ

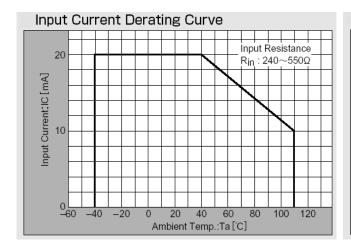
VH = VHM - VO (VHM : Die Ausgangsspannung wurde bei 50mT gemessen.)

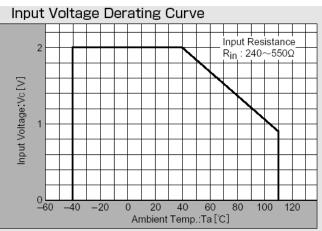
3. Ranganordnung und Kennzeichnung an Hallspannung am Ausgang

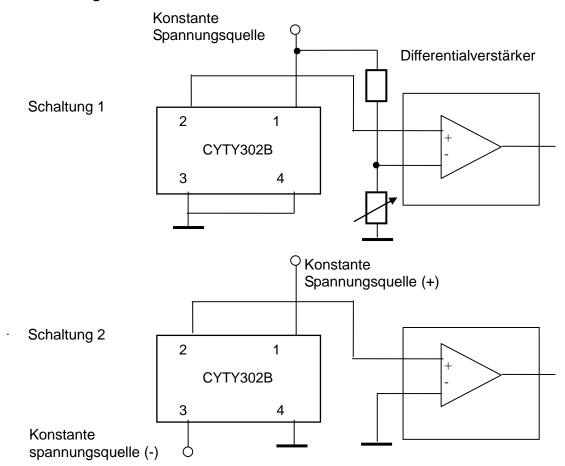

Hallspannnung am Ausgang,VH	Rang	Messbedingungen
(mV)		
168 ~ 204	С	
196 ~ 236	D	
228 ~ 274	E**	Vin=1V, B=50mT
266 ~ 320	F**	(konstante Spannung)
310 ~ 370	G	
360 ~ 415	Н	


** Als Standardsensor bieten wir unseren Kunden den Rang E und F an.


http://www.cy-sensors.com


4. Charakteristische Kurve (nur für Referenzen)





5. Verbindung

6. Anwendungshinweise

Die Hallspannung V_H kann positiv oder negativ sein, wenn der Sensor wie folgt verbunden wird (Schaltung 1):

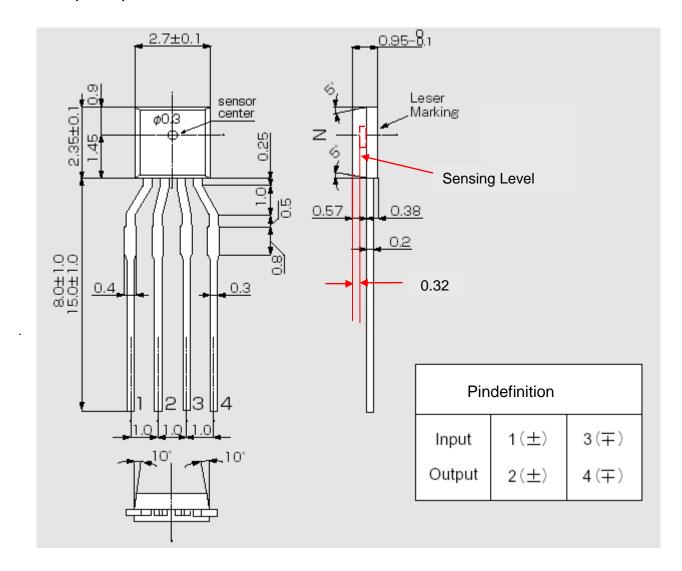
Pin 1: positive Eingangsspannung V+, beispielsweise +5VDC.

Pin 3: GND
Pin 2: AUSGANG
Pin 4: GND

Es ist nur möglich die positive Spannung am Pin 2 zu messen. Das bedeutet, dass die Ausgangsspannung am Nullmagnetfeld null beträgt. Diese Spannung wird als Offset-Spannung bezeichnet.

Die Ausgangsspannung ist in diesem Fall nicht gleich der Hallspannung. Die Ausgangsspannung entspricht der Summe der Offset-Spannung und der Hallspannung.

Die Offset-Spannung wird null, wenn die doppelte Versorgungsspannung V+ und V- am Sensor anliegt (Schaltung 2):

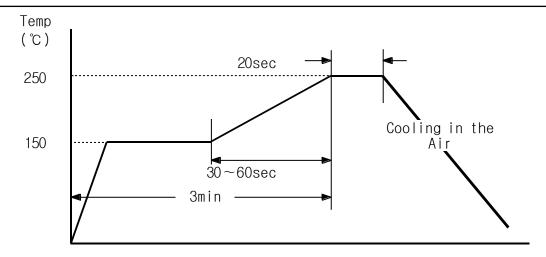

Pin 1: positive Eingangsspannung V+, beispielsweise +5VDC. Pin 3: negative Eingangsspannung V-,beispielsweise -5VDC

Pin 2: AUSGANG Pin 4: GND

In diesem Fall entspricht die Ausgangspannung der Hallspannung.

7. Maße (in mm)

8. Methoden zur Montage


8-1. Lötbedingungen am PCB

- kein rapides Erhitzen und Abkühlen.
- empfohlene Vorheizbedingungen liegen be 130-150°C für 2-3 Minuten.
- empfohlene Rückflussbedingungen liegen bei 220~230°C für 10~15 Sekunden

8-2. Lötmethoden und zulässige Temperatur

Objekt	Methoden	Temperatur
Rückfluss	Löten durch Überschreiten der Hitzezone	Max 250°C in 20sek
Lötkolben	Löten mittels Lötkolben	Max 300°C in 3sek

9. Zuverlässigkeit

9.- 1 Testbedingungen

Parameter	Bedingungen
Hohe Lagerungstemperatur	Ta=110°C,t=1000HR
Niedrige Lagerungs-temperatur	Ta=-40°C,t=1000HR
Hohe Betriebstemperatur	Ta=100°C,lopr=6mA,t=1000HR
Niedrige Betriebstemperatur	Ta=-20°C,lopr=6mA,t=1000HR
Hohe Betriebstemperatur, hohe	Ta=60°C, HR=90%,lopr=9mA,t=1000HR
Luftfeuchtigkeit	
Luftfeuchtigkeit	Ta=60°C,HR=90%, t=1000HR
PCT	Ta=121°C,HR=100%, Pv=2atm, t=24HR
Thermaler Schock	T(L)=-55°C,T(H)=150°C, t=(L,H)=30min,M=30Zyklen
Löthitzewiderstand	Lötzeit=250±5°C, t=10sec,Rückfluss
Löttemperatur und Dauer	Löttemperatur=230±5°C, t=5sec,dip
Anschlussstärke	Tension 300g/30sec
Druckerhöhung	V=500V, C=200pF, R=0Ω (Testmethode EIAJ EDX 8503)

9.2 Kriterien für die Beurteilung

Nach jedem Zuverlässigkeitstest sollten die Proben für mindestens 24 Stunden in der entsprechenden Raumtemperatur und Luftfeuchtigkeit aufbewahrt werden und erst dann geprüft werden. Die Veränderungen sollten sich innerhalb folgender Parameter bewegen.

Objekt	OK SPEC	NG/OK
ΔRin	unter ±20%	
ΔRout	unter ±20%	OK (zufriedenstellend)
ΔVΗ	unter ±20%	
ΔVo/VH	unter ± 5%	