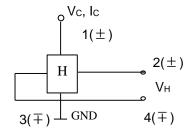


CYSJ106DFN 砷化镓霍尔效应元件

CYSJ106DFN 系列霍尔效应元件是一款由单晶砷化镓(GaAs)半导体材料组Ⅲ-V 使用离子注入技 术制成的离子注入磁场传感器,可将磁通量密度信号线性地转变成电压输出。


特点

- 高线性度
- 温度稳定性好
- 微型封装
- 宽测量范围 0-3T

典型应用

- 磁场测量
- 直流无刷电机
- 电流传感器
- 非接触式开关
- 位置控制
- 旋转探测

框图

绝对最大额定值

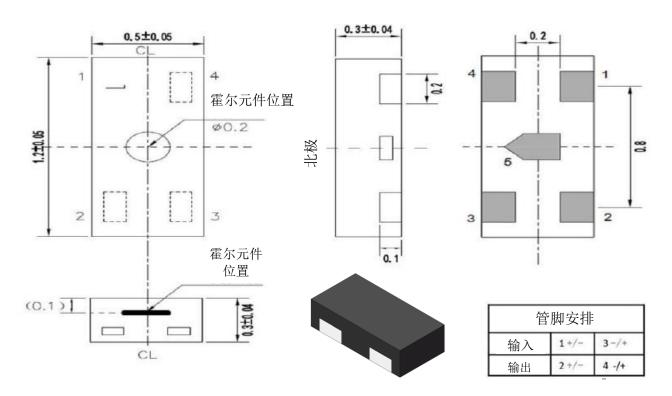
参数	符号	数值	单位
最大输入电流/电压	I _C /V _C	11mA / 9.5V	mA/V
最大输入功率	P _D	105	mW
工作温度范围	TA	-40~125	°C
贮存温度范围	Ts	-40~150	°C

电参数(T_A=25°C)

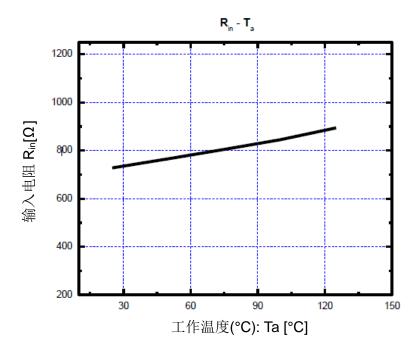
参数	符号	测试条件	数值	单位
霍尔输出电压	Vн	B=100mT, Ic=8mA/Vc=6V	110~150	mV
偏移电压	Vos(Vu)	Vc=6V, B=0mT	±5	mV
输入电阻	Rin	B=0mT, I _C =0.1mA	650~850	Ω
输出电阻	Rout	B=0mT, Ic=0.1mA	650~850	Ω
霍尔输出电压温度系数	αV _H	I _C =5mA , B=50mT	-0.06	%/°C
输入和输出电阻温度系数	αR _{in} αR _{out}	I _C =0.1mA , B=0mT (Ta=25°C ~ 125°C)	0.3	%/°C
线性度	ΔКн	Ic=5mA B=0.1/0.5T	±2	%

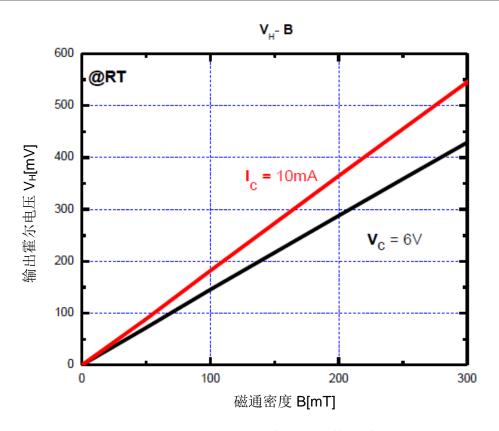
 $V_{\rm H} = V_{\rm H-M} - V_{\rm os}$, 其中, $V_{\rm H-M}$ 是霍尔元件的输出电压, $V_{\rm H}$ 是霍尔电压, $V_{\rm os}$ 是相同电激励下的偏移电压。

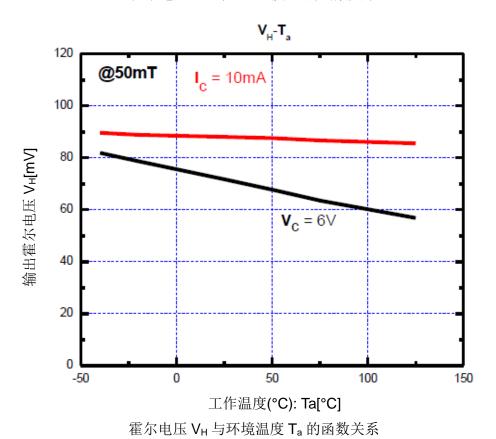
$$\alpha V_{H} = \frac{1}{V_{H}(T_{1})} x \frac{V_{H}(T_{2}) - V_{H}(T_{1})}{T_{2} - T_{1}} x 100, \qquad \alpha R_{in} = \frac{1}{R_{in}(T_{1})} x \frac{R_{in}(T_{2}) - R_{in}(T_{1})}{T_{2} - T_{1}} x 100$$

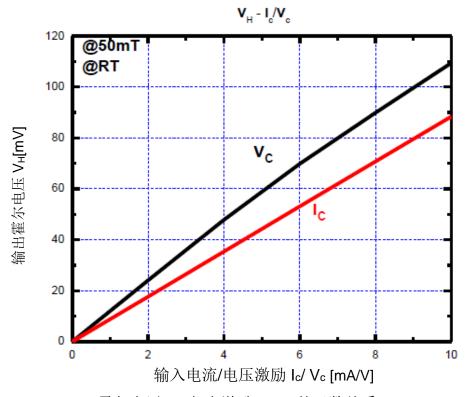

$$\Delta K_{H} = \frac{K(B_{1}) - K(B_{2})}{[K(B_{1}) + K(B_{2})]} x 200 \qquad K_{H} = \frac{V_{H}}{I_{C}B}$$

 $T_1=25^{\circ}\text{C}, T_2=125^{\circ}\text{C}, B_1=0.5\text{T}, B_2=0.1\text{T}$


http://www.cy-sensors.com


封装外形图 (单位: mm)


特性曲线



输入电阻 Rin 与环境温度 Ta 的函数关系

霍尔电压 VH 与磁通密度 B 的函数关系

霍尔电压 V_H 与电激励 I_c/ V_c 的函数关系

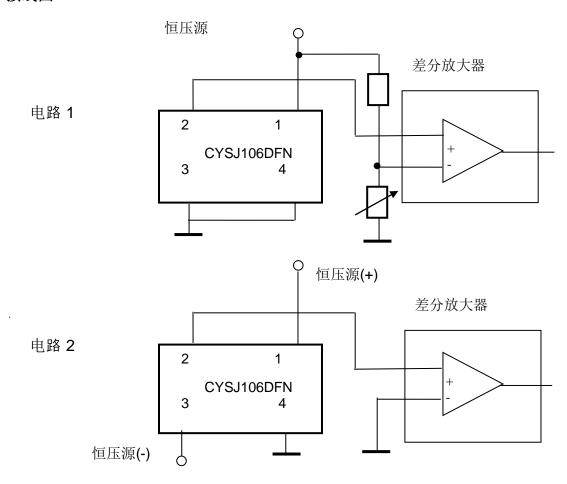
ESD预防措施

本产品是对ESD(静电放电)敏感的设备。 在以下环境中处理带有ESD警告标记的霍尔元件:

- 不太可能出现静电荷的环境 (例如:相对湿度超过40%RH)。
- 处理器件时佩戴防静电服和腕带
- 对于直接接触器件的容器建议实施ESD防护措施。

存储注意事项

- 在开封MBB后,产品应在适当的温度和湿度(5至35℃,40至60%RH)下储存。强烈建议使用自密封 袋,使产品远离氯气和腐蚀性气体。
- 长期储存产品用MBB密封
- 对于超过2年的储存,建议在MBB密封的氮气氛中储存。 大气中的水氧会导致器件引脚氧化,从而导 致引脚焊接能力变差。


安全注意事项

- 不要通过燃烧,粉碎或化学处理等方式将本产品变成气体,粉末或液体。
- 丢弃本产品时,请遵守法律和公司规定。

http://www.cy-sensors.com

接线图

应用说明

霍尔电压 VH 可以是正和负,但若一端如下连接到传感器 (电路 1):

引脚 1: 正输入电压 V+, 例如 +5VDC.

引脚 3: 地 引脚 2: 输出 引脚 4: 地

在引脚 2 一端只能测量到正电压,这说明在磁场为 0 时输出电压不是 0,该电压称作偏移电压。在这种情况下输出电压不等于霍尔电压,输出电压等于偏移电压和霍尔电压之和。

Tel.: +49 (0)8121 - 2574100

Fax: +49 (0)8121-2574101

Email: info@cy-sensors.com http://www.cy-sensors.com

若连接双电源 V+ 和 V- 到传感器(电路 2),偏移电压是 0:

引脚 2: 输出 引脚 4: 地

这种情况下,输出电压等于霍尔电压。