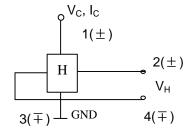


CYSJ166A 砷化镓霍尔效应元件

CYSJ166A 系列霍尔效应元件是一款由单晶砷化镓(GaAs)半导体材料组III-V 使用离子注入技术制成的离子注入磁场传感器,可将磁通量密度信号线性地转变成电压输出。


特点

- 高线性度
- 温度稳定性好
- 微型封装
- 宽测量范围 0-3T

典型应用

- 磁场测量
- 直流无刷电机
- 电流传感器
- 非接触式开关
- 位置控制
- 旋转探测

框图

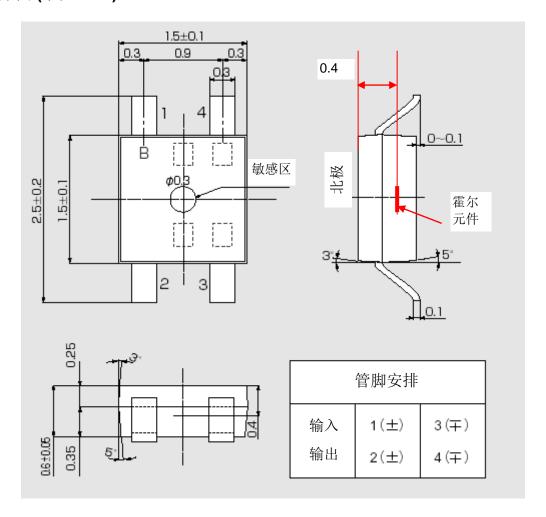
绝对最大额定值

参数	符号	数值	单位
最大输入电流/电压	V _C	12	V
最大输入功率	P _D	150	mW
工作温度范围	T _A	-40~125	°C
贮存温度范围	Ts	-55~150	°C

电参数(T_A=25°C)

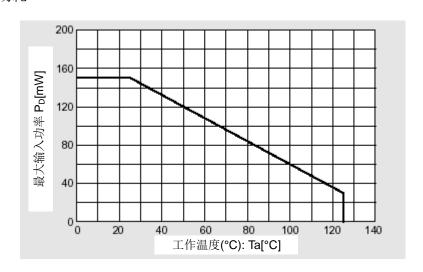
参数	符号	测试条件	数值	单位
霍尔输出电压	V _H	B=100mT, V _C =6V	156~204	mV
偏移电压	Vos(Vu)	V _C =6V, B=0mT	±8	mV
输入电阻	R _{in}	B=0mT, I _C =0.1mA	1000~1500	Ω
输出电阻	R _{out}	B=0mT, I _C =0.1mA	1800~3000	Ω
霍尔输出电压温度系数	αV_H	I _C =5mA , B=100mT (Ta=25°C ~ 125°C)	-0.06	%/°C
输入和输出电阻温度系数	αR _{in} αR _{out}	I _C =0.1mA , B=0mT (Ta=25°C ~ 125°C)	0.3	%/°C
线性度	ΔK _H	I _C =5mA B=0.1/0.5T	2	%

注意:

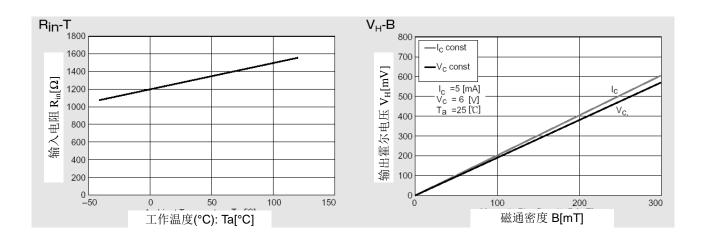

$$\alpha V_{H} = \frac{1}{V_{H}(T_{1})} \times \frac{V_{H}(T_{2}) - V_{H}(T_{1})}{T_{2} - T_{1}} \times 100, \qquad \alpha R_{in} = \frac{1}{R_{in}(T_{1})} \times \frac{R_{in}(T_{2}) - R_{in}(T_{1})}{T_{2} - T_{1}} \times 100$$

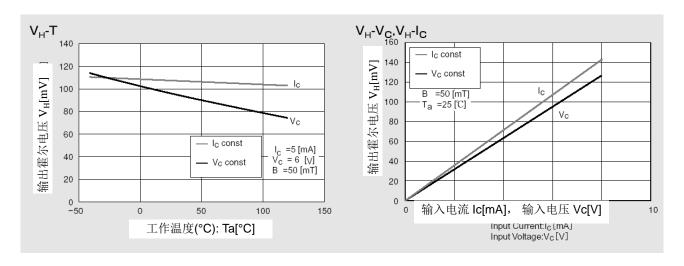
$$\Delta K_{H} = \frac{K(B_{1}) - K(B_{2})}{[K(B_{1}) + K(B_{2})]} \times 200 \qquad K_{H} = \frac{V_{H}}{I_{C}B}$$

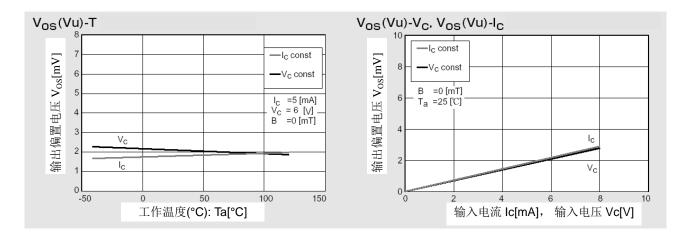
$$T_{1} = 25^{\circ}\text{C}, \ T_{2} = 125^{\circ}\text{C}, \quad B_{1} = 0.5\text{T}, \ B_{2} = 0.1\text{T}$$



封装外形图 (单位: mm)

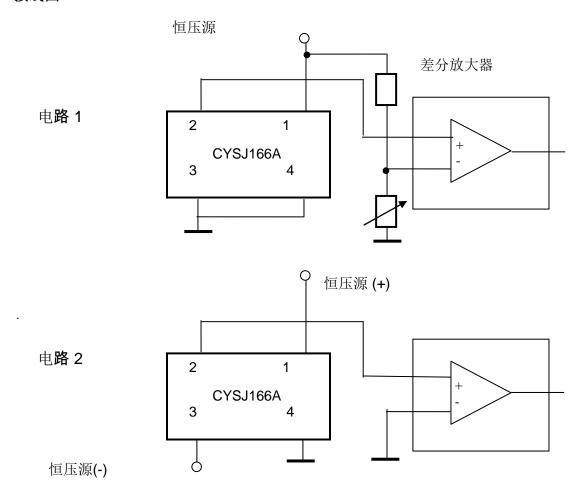

特性曲线


允许封装功耗



Tel.: +49 (0)8121 - 2574100 Fax: +49 (0)8121 - 2574101

Email: info@cy-sensors.com http://www.cy-sensors.com



接线图

应用说明

霍尔电压 V_H 可以是正和负,但若一端如下连接到传感器 (电路 1):

引脚 1: 正输入电压 V+, 例如 +5VDC.

引脚 3: 地 引脚 2: 输出 引脚 4: 地

在引脚 2 一端只能测量到正电压,这说明在磁场为 0 时输出电压不是 0,该电压称作偏移电压。在这种情况下输出电压不等于霍尔电压,输出电压等于偏移电压和霍尔电压之和。

Tel.: +49 (0)8121 - 2574100

Fax: +49 (0)8121-2574101

Email: info@cy-sensors.com http://www.cy-sensors.com

若连接双电源 V+ 和 V- 到传感器(电路 2),偏移电压是 0:

引脚 2: 输出 引脚 4: 地

这种情况下,输出电压等于霍尔电压。