

Fluxgate Closed Loop Voltage Sensor CYFGVS3000EVA

CYFGVS3000EVA is a voltage sensor based on the fluxgate closed-loop principle, and can be used for measuring DC, AC, pulse and various irregular waveform voltages under galvanic isolation conditions. It has ultra-high accuracy and linearity, ultra-high sensitivity and resolution, very low out-of-phase current and temperature drift. It is widely used in instrumentation, medical equipment, metrology and calibration, laboratories, high-precision power supplies, new energy vehicles and so on.

Features

- High electrical isolation
- High linearity, high accuracy
- High reliability
- Good overload capability
- Small sizes
- Insulated plastic case recognized according to UL94-V0
- Very good property-price ratio

Applications

- Battery supplied applications
- Uninterruptible power supplies (UPS)
- Variable speed drives
- Welding machine
- Electric power network monitoring
- AC frequency conversion servo-motors
- Electrochemical applications

Technical Data

Parameters	Values						Unit
Part number	CYFGVS	CYFGVS	CYFGVS	CYFGVS	CYFGVS	CYFGVS	
	50EVA	200EVA	500EVA	1000EVA	2000EVA	3000EVA	
Rated input voltage	50	200	500	1000	2000	3000	V
Measuring voltage range	±150%						
Rated input current	1.0						mA
Rated output current	Iout = 50						mA
Measuring resistance	Vc=±15V, Vp=±1.0mA 时: 50~200						Ω
Input internal resistance	50K	200K	0.5M	1.0M	2.0M	3.0M	Ω
Total Input Power Consumption	0.05	0.2	0.5	1	2	3	W
Supply Voltage	±12~±15(±5%)						V
Current consumption	At V _P =0 35+I _{OUT}						mA
Insulation voltage	Between primary and secondary circuits 6kV rms/50Hz/1minute						
Linearity	<0.05						%FS
Accuracy	$T_{A}=25^{\circ}C V_{C}=\pm 15V \pm 0.1$						%FS
Zero Offset Current	T _A =25°C <±10						μA
Thermal Drift of Offset Current	Vp=0, T _A =-25~+85°C <±10						μA
Response Time	<1						μs
Bandwidth (-3dB)	DC~100						kHz
Operating Temperature	-25~+85						°C
Storage Temperature	-40~+100						°C
Mass (approx.)	480						g
Used Standard	Q/320115QHKJ01-2016						

Version 1 Released in January 2024 Dr.-Ing. habil. Jigou Liu

Chen Yang Technologies GmbH & Co. KG

Case Style and Connection

Application Note

- 1. Incorrect wiring of the sensor may cause damage to the module of the sensor.
- 2. During the sensor is witched on, the same voltage phase value can be measured at the output when the measured voltage is accessed from the sensor input HT+ terminal to HT- terminal.
- 3. The environment in which the sensor is installed and used should be free of conductive dust and corrosion.
- 4. After the sensor is installed, the operator should not touch any exposed conductive parts. If necessary, the sensor can be protected, such as adding protective cover.

Markt Schwabener Str. 8 D-85464 Finsing Germany Tel.: +49 (0)8121 - 2574100 Fax: +49 (0)8121 - 2574101 Email: info@cy-sensors.com http://www.cy-sensors.com