

Split Core Hall Effect AC Current Sensor CYHCS-KF2V

This Hall Effect current sensor is based on open loop principle and designed with a high galvanic isolation between primary and secondary circuits. It can be used for measurement of AC current, pulse currents etc. The output of the transducer reflects the rectified average value of the current in the carrying conductor.

Product Characteristics	Applications		
 Excellent accuracy Very good linearity Using split cores and easy mounting Less power consumption Window structure Electrically isolating the output of the transducer from the current carrying conductor No insertion loss 	Photovoltaic equipment Frequency conversion timing equipment Various power supply Uninterruptible power supplies (UPS) Electric welding machines Transformer substation Numerical controlled machine tools Electric powered locomotive Microcomputer monitoring		
 Current overload capability 	 Electric power network monitoring 		

Electrical Data

Primary Nominal Current I_r (A), rms	Measuring Range (A)	DC Output Voltage (V)	Window size (mm)	Part number
300	0~±300			CYHCS-KF2V-300A-xn
500	0~±500	x=0: 0-4V ±1.0% x=3: 0-5V ±1.0% x=8: 0-10V ±1.0%		CYHCS-KF2V-500A-xn
600	0~±600			CYHCS-KF2V-600A-xn
800	0~±800		85 x 27	CYHCS-KF2V-800A-xn
1000	0~±1000		63 X Z1	CYHCS-KF2V-1000A-xn
1500	0~±1500			CYHCS-KF2V-1500A-xn
2000	0~±2000			CYHCS-KF2V-2000A-xn
3000	0~±3000			CYHCS-KF2V-3000A-xn

(n=2, Vcc= +12VDC; n=3, Vcc =+15VDC; n=4, Vcc =+24VDC)

Supply Voltage V_{cc} = +12V, +15V, +24VDC \pm 5% Output Voltage at I_r , T_A =25°C: V_{out} =0- 4V, 0-5V, 0-10VDC

Tel.: +49 (0)8121 - 2574100

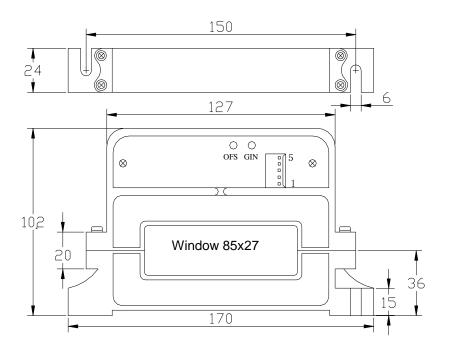
Fax: +49 (0)8121-2574101

Email: info@cy-sensors.com http://www.cy-sensors.com

Current Consumption $I_c < 25 \text{mA}$ Galvanic isolation, 50/60Hz, 1min:3kV rmsOutput Impedance: $R_{\text{out}} < 150\Omega$

Load resistance: $10k\Omega$

Accuracy and Dynamic performance data


Accuracy at I_r , T_A =25°C, $X < \pm 1.0\%$ FS Linearity from 0 to I_r , T_A =25°C, $E_L < \pm 0.5\%$ FS Electric Offset Voltage, T_A =25°C, $V_{oe} < 50 \text{mV}$ Magnetic Offset Voltage ($I_r \rightarrow 0$) $V_{om} < \pm 20 \text{mV}$ Thermal Drift of Offset Voltage, $V_{ot} < \pm 1.0 \text{mV/°C}$ Response Time at 90% of I_P (f=1k Hz) $t_r < 200 \text{ms}$ Frequency Bandwidth (-3dB), $f_b = 20 \text{Hz} - 20 \text{ kHz}$

General Data

Ambient Operating Temperature, Ambient Storage Temperature, Case Material:

$$T_A = -25^{\circ}\text{C} \sim +85^{\circ}\text{C}$$

 $T_S = -40^{\circ}\text{C} \sim +100^{\circ}\text{C}$
PBT

Dimensions

CYHCS-KF2V GND Vo

Pin Arrangement

1: Vcc

2: Ground (GND)

3: Ground (GND)

4: NC

5: Output

GIN: gain adjustment OFS: offset adjustment

Notes:

- 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection.
- 2. Two potentiometers can be adjusted, only if necessary, by turning slowly to the required accuracy with a small screwdriver.
- 3. The best accuracy can be achieved when the window is fully filled with bus-bar (current carrying conductor).
- 4. The in-phase output can be obtained when the direction of current of current carrying conductor is the same as the direction of arrow marked on the transducer

Email: info@cy-sensors.com http://www.cy-sensors.com